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()  All our models are able to learn a generalized reward function in
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« For data formatting, the data vector X contains all the segments
stacked vertically, and the output vector y contains the cumulative
rewards of the corresponding segments in the X vector

* Our neural network takes in a given 43-dimensional state-action pair
and tries predicting the reward 7, (s, a) = r(s, a)

* To improve the adaptation process, we also generated data for the new
tasks using a different policy (without noise) than the one already used

* We then use comparisons with segments from the prior policy (noiseless)
and segments from the original policies (noisy measurements)

* Our hope is that having a prior policy guiding the learning process will COLLEGE OF ENGINEERING
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