Few-Shot Preference-Based Reinforcement Learning

Ishan Kapnadak, Karan Anand, Rishikesh Ksheersagar, Shlok Agarwal, Sudhanshu Agarwal
ELECTRICAL ENGINEERING & {kapnadak, karanand, rishiksh, ashlok, sudhagar}@umich.edu
e o University of Michigan, Ann Arbor

Introduction Methodology m

Training Accuracy Training Loss

* RL has shown promise in various domains but design of a good - Given two partial trajectories o; and o,, we use Bradley-Terry model for iy
reward functl_on remains a critical challenge (especially with large oreference prediction: | 3 e A Repie
state and action spaces) ol \

« Sparse reward functions do not afford effective learning, and dense Ploy > o] = exp) ; fw(#» a%) 2 W : = m":\
reward functions are often susceptible to reward hacking. exp >, Ty (s, ai) + exp Y., Py (82, a?) 277 | 7 04 %

 Some recent work has been done on the use of human o] M;%M idfle 10 4
preferences to align reward functions with human intent. - With this, the learning task becomes a simple classification task with the L ‘"‘WW%MWWW%"‘M

+ These methods require a lot of human-annotated data to perform following cross-entropy loss function: =] | | | Lt — 00 :
well — can we do this with minimal burden on humans? T a0 Epochs

‘Cpref(wa D) — _]E(al,ag,y)ND (]I{y — 1} 10gP[0'1 ~ 02] +]I{y — 2} log(l o P[Ul >~ 02])) Lever-Pull without prior Lever-Pull with prior
m 0.9 - 0.9 - \/‘\/\'\/\/W\/\i\lm 03
* Our neural network employs a three-linear-layer architecture with an input |
Given dataset of ous tasks. | oy f task size of 43 (state + action) and a hidden size of 256
'ven dalaset Of previous 1asks, iearm policy Tora new as * We use a ReLU activation at the end of each hidden layer, and the final : S07
* Instead of reward regression, we use a preference-based approach output represents the predicted reward for a given state-action pair 7. :
with a preference over two partial trajectories g, and o, P P P J P

 Use a neural network to predict rewards and then classify segments . . R —

« First learn a generalized reward function then adapt to a new task MOdeI'AgnOStIC Meta'Learmng 0 E— S
using as few human queries as possible! , _ _ , _ e N B T 5 1 0 % 4 % e 7

S a P * The first model we use is Model-Agnostic Meta-Learning (MAML) which epochs Epochs

learns a generalized reward function through the following update

Prior Tasks: 7,7, %, o N T i ﬂ? LA W — P — 5V¢ Z Epref (w — av¢£pref(¢a Di)a Di) CO"CIUSlon & FUture WO rk
1=1

C o @ [e}] @ @
S:\(17?.’) (S,‘A,_) Cs,, af‘;‘) o o o (51“1 011)

() All our models are able to learn a generalized reward function in

" o * The generalized reward function is then adapted to a new task using a about 1000 iterations, which adapts to a new task in only about 75
me | ol | eol |an] | eo| &F }_\\ \\ oo 5 . — simple gradient descent update as follows epochs (which validates our few-shot goal!)
g |@o| | eo| e]an | I J J = * While adding a prior policy slightly improves the performance for
T (als) I I
; — 1 —aV.Ll D . Reptile, the same cannot be said for the other two models
Yy ¥ pref(w’ new) « A reweighting of the prior policy might help alleviate this issue
* We also try out a variant of MAML which we call iterated MAML where * A better benchmark for our models is the success rate on the new
Data P re aration the inner update step is performed multiple times before the outer step task rather than accuracy of predicting preferred segments — this
p * The final learning framework we try is REPTILE which uses the following requires the use of a Soft Actor-Critic algorithm for policy learning
_ update rule for learning the generalized reward function: * We plan to learn the policy in the next week, and later, incorporate
* We use the MetaWorld environment to generate data actual human feedback rather than just oracle feedback
. \:;\S/Bedgse 10. pre;tra;mng t?sks with 13’5((1). eplso.des lpertFaskSpaCe N « Should time permit, we also plan to perform a study on how the
* oJ-dimensional observation space, 4-dimensional action — E - segment length affects performance and query efficienc
- Divide each episodes into segments of length 25 Yy 6V¢ Epref (¢’ DZ) J J P auery Y
« For each task, randomly sample segments and generate 1=1
comparisons with labels generated according to the preference: * The adaptation process remains the same and uses gradient descent. In S|g N |f ic 2 nt Refe rences

; 1) (1 2) (2 practice, we have used Adam optimizers for faster convergence
Lif r(sy” @) > 2, r(st”,),

. _ _ « Joey Hejna and Dorsa Sadigh. Few-Shot Preference Learning for
 AnE—- Prior Policy Human-in-the-Loop RL. 2022

 Kimin Lee, Laura Smith, and Pieter Abbeel. PEBBLE: Feedback-
Efficient Interactive Reinforcement Learning via Relabeling
Experience and Unsupervised Pre-training. 2021.

y(al’ 02) = {

« For data formatting, the data vector X contains all the segments
stacked vertically, and the output vector y contains the cumulative
rewards of the corresponding segments in the X vector

* Our neural network takes in a given 43-dimensional state-action pair
and tries predicting the reward 7, (s, a) = r(s, a)

* To improve the adaptation process, we also generated data for the new
tasks using a different policy (without noise) than the one already used

* We then use comparisons with segments from the prior policy (noiseless)
and segments from the original policies (noisy measurements)

* Our hope is that having a prior policy guiding the learning process will COLLEGE OF ENGINEERING

help the model adapt to a new task faster ELECTRICAL ENGINEERING & COMPUTER SCIENCE

UNIVERSITY OF MICHIGAN

